
A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH 
TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES 
FOR SUBNATIONAL AREAS WITH R-INLA

Diba Khana1, Lauren M. Rossen2, Holly Hedegaard3, and Margaret Warner
1Division of Research Methodology, National Center for Health Statistics, Centers for Disease 
Control and Prevention, Hyattsville, MD 207822

2Division of Vital Statistics, National Center for Health Statistics, Centers for Disease Control and 
Prevention, Hyattsville, MD 20782

3Office of Analysis and Epidemiology, National Center for Health Statistics, Centers for Disease 
Control and Prevention, Hyattsville, MD 20782

Abstract

Hierarchical Bayes models have been used in disease mapping to examine small scale geographic 

variation. State level geographic variation for less common causes of mortality outcomes have 

been reported however county level variation is rarely examined. Due to concerns about statistical 

reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are 

suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) 

statistical reliability criteria, precluding an examination of spatio-temporal variation in less 

common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct 

estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated 

Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality 

outcomes to enable examination of spatio-temporal variations on smaller geographic scales such 

as counties. This method allows examination of spatiotemporal variation across the entire U.S., 

even where the data are sparse. We used mortality data from 2005–2015 to explore spatiotemporal 

variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy 

in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-

temporal models were implemented with spatially structured and unstructured random effects, 

correlated time effects, time varying confounders and space-time interaction terms in the software 

R-INLA, borrowing strength across both counties and years to produce smoothed county level 

SRs. Model-based estimates of SRs were mapped to explore geographic variation.
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1. Introduction and motivation

The use of Bayesian methods in the areas of disease mapping, epidemiology, and small area 

health applications is well established. The Bayesian inference combines the prior 

distribution on model parameters and the data likelihood to derive the posterior distribution 

which summarizes the behavior of the parameters in light of the observed data. (Lawson, A. 

(2013)) Bayesian hierarchical models that incorporate time and area effects provide 

additional insights in terms of the interpretability and similarity based on the neighborhood 

structure of areas and adjacent times. However, incorporating time and area effects results in 

increasingly complex model structures which can substantially increase the computational 

time required to estimate these models.

Traditionally, Markov Chain Monte Carlo (MCMC methods) have been used to approximate 

the posterior marginals in Bayesian Hierarchical models and are computationally intensive 

and time consuming. Two basic methods, namely, Gibbs sampling and Metropolis-Hastings 

are designed in Winbugs software (Ntzoufras, I. (2009)) to approximate the posterior 

distributions via MCMC. The computation time in reaching convergence for the different 

parameters in the model can often be measured in days or weeks of time for big datasets or 

large models. (Barker, L. E. et al. (2013), Bivand, R.S. et. al. (2015), Khan, D. et. al. (2018), 

Martins, T.G. et al. (2013), Rue, H. et al. (2009), Rue, H. and Martino, S. (2009)) Further, 

the highly multivariate structure of the models limits the ability to approximate the full 

posterior distributions. Several other packages exist for example, STAN (Stan Development 

Team (2016)) but require a certain level of programming expertise. Spatial models are not 

built-in in JAGS (Plummer, M. (2003)) and hence need to be programmed.

The INLA method has been introduced as an alternative to MCMC to approximate the 

posterior marginals of latent Gaussian models and significantly reduces the computation 

time. (Rue, H. et.al. (2009) The INLA method does not use iterative computation techniques 

like MCMC. The posterior approximation is achieved by applying numerical integrations for 

fixed effects and Laplace integral approximation to the random effects (Chen, C. et al. 

(2014), Martins, T.G. et al. (2013), Rue, H. et al. (2009), Rue, H. and Martino, S. (2009)). 

Models are built-in and can be fitted in R-INLA, using R commands (Bivand, R. S. (2015))

In this study, we examine existing Bayesian spatio-temporal models in the software R-INLA 

for the purposes of mapping less common causes of mortality outcomes on small geographic 

scales and consider suicide rates (SRs) at the county level as one particular application. 

Mapping county level estimates provides greater understanding of the trends and variability 

in spatio-temporal patterns of less common causes of mortality outcomes not possible by 

examination of direct national and state estimates (Schaible, W.L. (1996)) or by examination 

of direct county level estimates. Additionally, mapping county-level estimates can help 

highlight areas where estimates are higher or lower than the national average, and provide 

additional insights on how county-level estimates have changed over time across the U.S. 

Due to the potential instability of the direct estimates of less common causes of mortality 

outcomes at smaller geographic scales such as counties, compounded by small population 

sizes, the annual county level direct estimates are typically not reported. For example, the 

majority of counties across the U.S. report fewer than 20 suicide deaths in any given year, 
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the criterion for suppression of death rates due to concerns about statistical reliability by the 

Division of Vital Statistics at the National Center for Health Statistics. (Kochanek, K.D. et 

al. (2016), page 118) To account for the problems encountered in examining spatio-temporal 

variations with county level direct estimates for less common causes of mortality outcomes 

such as SRs over time, as outlined above, we propose to examine existing hierarchical 

Bayesian spatio-temporal models that account for extra uncertainty, inherent spatial 

autocorrelation, and the time dependent structure of the data to produce smoothed model 

based yearly county level SRs in the software R-INLA to examine broad scale trend and 

variability in spatiotemporal patterns in SRs across 3,140 U.S. counties from 2005 through 

2015. (Knorr-Held, L. and Besag, J. (1998), Lawson, A. (2013), Lawson, A. (2015), 

Lagazio, C. et al. (2001), Wall, M. M. (2004), Xia, H., et al. (1997))

Specifically, in a Bayesian spatio-temporal model, the spatially structured and unstructured 

random effects are used to model the inherent spatial autocorrelation in the data, the 

correlated and uncorrelated time effects model the time dependent structure of the data, time 

varying covariates model the extra uncertainty in the data due to measured confounders, and 

the space-time interaction effects model the residual spatio-temporal variation that are 

unaccounted for by the county and time random effects to produce reliable model based 

yearly county level estimates.

The posterior distributions for the parameters in Bayesian Hierarchical spatio-temporal 

models in this study are simulated in the software R-INLA, to reduce the computation time 

often incurred when analyzing large spatial datasets. A variety of prior distributions for 

model parameters and random effects can be specified in R-INLA. The Bayesian spatio-

temporal modeling approach borrows strength across both counties and years to produce 

smoothed yearly county level estimates and allows examination of spatial and temporal 

variability in less common causes of mortality outcomes over time. This method can be 

applied to a large number of rare causes of mortality outcomes to examine small-scale 

geographic variation and temporal variability with model based smoothed and robust small 

area estimates. The accuracy of the INLA estimates compared to MCMC estimates have 

been examined in large number of study areas. (Fong, Y. et al. (2010), Martins, T.G. et al. 

(2013), Paul, M. et al. (2010), Riebler, A. et al. (2012), Rue, H. et al. (2009), Rue, H. and 

Martino, S. (2009), Schrodle, B. (2011))

The spatiotemporal models in R-INLA smooth the time trends by borrowing strength from 

adjacent times. Since 2015 is the most recent year of data that is available from the National 

Vital Statistics System (NVSS) files, this study incorporates the years 2005–2015 to 

examine the county level spatio-temporal variation in SRs using 11 years of NVSS data. The 

smoothed model based county level SRs are mapped and compared for the years 2005 and 

2015 to examine the geographic variations and the broad scale trend in spatio-temporal 

patterns. The absolute difference in the increase in SRs over time is also mapped to examine 

the overall increase in SRs from the start of the analyses year (2005) to the end of the 

analyses year (2015).

Section 2 describes the general space-time model for analyzing rare causes of mortality 

outcomes on small geographic scales, such as counties. Section 3 describes one particular 
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application of the proposed existing methodology to examine county level spatio-temporal 

variation in SRs. Specifically, Section 3.1 contains information on SRs data and the 

respective sources of covariates used in this study. Section 3.2 describes model and prior 

distribution assumptions for modeling county level SRs, and Section 3.3 discusses model 

selection criteria for selecting the best model for county level SRs. In Section 3.4 we discuss 

model accuracy. Section 3.5 discusses results with respect to model covariates, and Section 

3.6 outlines the broad scale trend and variability in geographic patterns and the usefulness of 

the Bayesian spatio-temporal technique in mapping small area outcomes such as SRs by 

using the proposed existing Bayesian spatio-temporal technique in R-INLA. Sections 4 

summarizes the discussion.

2. Methods

2.1 Hierarchical Bayesian Model Specification

The hierarchical Bayes statistical models employ multiple levels of modeling specified in a 

hierarchical order to estimate the posterior distributions of the model parameters using the 

Bayes method. The observed data is combined with the multiple sub-level model 

specifications (prior distributions) and possible covariates to estimate the posterior 

distribution via Bayes theorem. The hierarchical Bayes models can be used to model to 

model grouped data: temporally (repeated in time) or spatially structured (exhibiting spatial 

autocorrelation).

The small-scale geography (e.g. county level) data for a less common cause of mortality 

outcome, in general, often exhibits strong spatial autocorrelation. (Besag et.al. (1991)) Time 

varying covariates can account for some of the spatial and temporal autocorrelation. 

(Lawson, A. (2013)) The residual spatial autocorrelation is accounted for by the introduction 

of spatially structured random effects into the model. The modeling of spatially structured 

random effects via the adjacency matrix of the counties by conditional autoregressive priors 

was first proposed by Besag et.al. (1991). (Besag, J. and Kooperberg, C (1995), Wall, M. M. 

(2004)) To account for potential linear and non-linear trends and extra variation in county 

level estimates over time, fixed, correlated and uncorrelated time effects and space time 

interaction effects are incorporated. (Böhning, D. et al. (2000), Knorr-Held, L. and Besag, J. 

(1998), Knorr-Held, L. and Rasser G (2000), Lagazio, C. et al. (2001), Lawson, A. (2013), 

Xia, H. et al. (1997)) Several models can be implemented using the R-INLA package 

accounting for the time and county, fixed and random effects. (Bivand, R (2015), Martins, 

T.G. et al. (2013), Rue, H. and Martino, S. (2009), Rue, H. et al. (2009)) Specifically, if yit = 

counts of deaths for a rare outcome of interest in county i and year t, and nit = counts of 

population of county i in year t. Then, yit ~ Binomial (nit, pit); i = 1,…, m counties and t =1,

…, T years, where pit = probability of a rare outcome of interest in county i at time t. The 

general hierarchical Bayes space-time model structure for modeling pit can be specified as 

(Lawson et.al. (2013)):

logit (pit) = α0 + Ai + Bt + Cit + Xit′β, where, the regression models include:

a. Grand intercept α0.

b. Spatial component accounting for existent spatial autocorrelation Ai.
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c. Time component accounting for fixed and random time effects Bt.

d. Space-time interaction term accounting for residual spatial variation not 

accounted for by the main time and space effects Cit.

e. Covariates which can be time varying or time-invariant Xit′β accounting for 

uncertainty due to measured confounders, where, Xit is the covariates matrix for 

county i and time t and β is a vector of regression parameters.

The posterior distributions of the parameters in the hierarchical Bayesian model can be 

estimated via Integrated Nested Laplace Approximation (INLA) in R, borrowing strength 

across both counties and years to produce smoothed yearly county level estimates even 

where the data are sparse. Depending on the nature of the data, a variety of latent models 

such as random walk-1, random walk-2, besag, convolution etc. can be implemented via R-

INLA software package to model the small area outcome and produce reliable smoothed 

estimates. (Bivand et.al. (2015)) Full list of the latent models, likelihoods and prior 

assumptions can be found in the R-INLA website at http://www.r-inla.org/

3 Application to US county level suicide rates

3.1 Data

Data were obtained from the 2005–2015 National Vital Statistics System (NVSS) Multiple 

Cause of Death Files (restricted-use geography files). (Centers for Disease Control and 

Prevention (2016)) The number of suicides by county of residence and year were identified 

based on the International Classification of Diseases, 10th Revision (ICD-10) underlying 

cause codes U03, X60-X84, and Y87.0. Population denominators for SRs were obtained 

from the U.S. Census intercensal (2005–2009), decennial (2010) and postcensal (2011–

2015) population estimates. (Statistics NCHS (2011), Statistics NCHS (2016a), Statistics 

NCHS (2016b)) Because suicide is not an allowable cause of death for persons under 5 years 

of age, population estimates were limited to those age 5 and older.

Data on time-varying county-level characteristics were obtained from several sources, 

including Area Health Resource Files, (AHRF (2015)), Uniform Crime Reporting Program 

Data: County-Level Detailed Arrest and Offense Data, (Uniform Crime Reporting Program 

Data (2014)), National Survey of Drug Use and Health (NSDUH) Substate Estimates, 

(NSDUH (2016)), Housing and Urban Development Small Area Foreclosure Rates (HUD 

2017). County-level covariates considered for inclusion in the model were selected based on 

previous studies that demonstrated an association between these factors and SRs such as 

prevalence of suicidal thoughts and behaviors, (Crosby, A.E. et al. (2011)) and economic 

factors (e.g., unemployment levels, foreclosure rates, poverty rates ) etc. (Brenner, B. et al. 

(2011), Crosby, A.E. et al. (2011), Haws, C. A. (2009), Hempstead, K. (2006), Kerr, W.C. et 

al. (2016), Kim, N. (2011), Lester, D. (1995), Middleton N. (2008), Miller, M. et al. (2006), 

Opoliner, A. et al. (2014), Siegel, M. and Rothman, E. F. (2016)) A table of included 

covariates and their respective sources is provided in Table s1 in the supplemental online 

information. While most values for covariates were at the county-level, estimates from 

NSDUH data (e.g., drug use, prevalence of major depressive episodes and serious mental 

illness) were measured at the sub-state level (aggregates of counties). (NSDUH (2016)) All 
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covariates were standardized to have a mean of zero and standard deviation of one before 

inclusion in the model.

Geographic boundaries for some counties changed during the study period. To provide 

constancy in the total number of counties during the study period (2005–2015), several 

counties in Alaska were aggregated and Bedford City, VA was merged with Bedford County, 

VA, resulting in a combined national file that included 3,140 counties (National Center for 

Health Statistics (2016c)).

3.2 Modeling assumptions for county level SRs

The total numbers of crude counts and percentages of the numbers of suicides equal to zero, 

less than 10, and less than 20 that were extracted from the NVSS files are shown in Table 1 

for the years 2005, 2009 and 2015. Several models were implemented for modeling the 

county level SRs based on the general space-time modeling framework specified in Section 

2. The general hierarchical Bayesian model incorporating time varying covariates and 

several time and county random effects for i = 1,…, m counties and t =1,…, T years, is:

logit (pit) = α0 + ui + vi + φ1t + φ2t + ψit + Xit′β, where, the regression models include:

a. logit link function log (pit/(1 − pit)); where, pit is the probability of suicides in 

county i at time t.

b. an overall intercept term α0. The intercept, α0 was assigned a flat prior: P(α0) ∝ 
constant, (where, P indicates probability).

c. Xit′β where, Xit : is the i th row and t th column of the covariates matrix X and β 
is a vector of regression parameters. The β for fixed effects (Xit′β) were assigned 

Normal priors. β ~ N (0,100)

d. the spatial effects, ui, by county to account for strong spatial autocorrelation, and 

were modeled via normal conditionally autoregressive priors (CAR) ( Besag, J. 

et al. (1991)) where weights were assigned to each county according to 

adjacency; neighboring counties receive a weight of one while non-neighboring 

counties receive a weight of zero. Specifically, for i = 1,…, m, counties and j = 1,

…, T, years;

where, τu is the conditional precision of spatial random effects and δi is the 

neighborhood of the i th region, nδi is the number of neighbours, , and 

the spatial weight, ωij equals 1 for counties i and j that are deemed neighbors and 

otherwise 0. Delaunay triangulation was used to establish spatial weights. This 

method generates Voronoi triangles from county centroids. Nodes connected by a 

triangle edge are considered neighbors. (Bivand, R (2017)) Each county has at 

least one neighbor, and the number of neighbors is determined empirically based 
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on the spatial distribution of the counties. Sphere of influence spatial weighting 

scheme was also investigated as an alternative and sensitivity results are 

discussed in the results section (Sterrantino, A.F. et al. (2017)). The conditional 

precision of the spatial random effect was assigned τu ~ Gamma (1, 0.001) prior. 

The Gamma (α, β) density is defined as:

e. non-spatial random effects vi by county, to model residual spatial variation not 

dealt with by our spatial random effects and were assigned a Normal prior, 

, with precision, τv. The conditional precision of the unstructured 

random effect was assigned τv ~ Gamma (1, 0.001) prior.

f. correlated random time effects, φ1t, to account for time dependence, were 

modeled via first order random walk. (Böhning, D (2000), Knorr-Held L and 

Rasser G (2000), Lawson, A. (2013)) This component assumes that the values 

for a given county in a given year depend upon the values observed for that 

county in the prior year plus a residual. The correlated temporal random effect, 

φ1t, which has a random walk prior distribution, with precision, τφ1; where 

. The conditional precision of the unstructured random effect 

was assigned τφ1 ~ Gamma (1, 0.001) prior.

g. an uncorrelated time dependent random effect φ2t, to account for independent 

time effects, which were modeled as normal distributed with precision, τφ2; 

. The conditional precision of the unstructured random effect was 

assigned τφ2 ~ Gamma (1, 0.001) prior.

h. the space time interaction term, ψit, to account for any residual spatiotemporal 

variation that was not captured by the spatial or temporal main effects, and were 

assumed to be independently and identically distributed. (Knorr-Held, L. and 

Rasser G (2000), Lawson (2015)); . The conditional precision of 

the unstructured random effect was assigned τψ ~ Gamma (1, 0.001) prior.

(The precisions for the intercept, fixed effects and the random effects are assigned priors that 

are default in R-INLA. INLA assigns log (precisions) ~log-gamma (1, 0.001) priors) 

(Bivand, R. S. (2015), Martins, T.G. et al. (2013), Rue, H. and Martino, S. (2009), Rue, H. et 

al. (2009)))

A set of models following the above general space time modeling approach were explored to 

determine the contribution of different components, namely, the correlated and uncorrelated 

random time effects, spatially structured and unstructured random effects, space time 

interaction term and the different covariates to examine spatio-temporal variation in county 
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level SRs. Alternative models such as proper CAR, Besag proper, and (ZIP) were also 

explored but did not provide any improvement in model fit, as assessed using the Deviance 

Information Criterion (DIC). (Spiegelhalter, D.J. et al. (2002)) Sensitivity analysis was also 

conducted to examine the effect of different priors. The six best competing models that 

incorporated a variety of time and county effects describing the features of the SRs data are 

presented here.

3.3 Model selection criteria

Model fit was evaluated using the Deviance Information Criterion (DIC) with lower values 

indicating better fit. For context, a DIC difference of 3–5 is considered significant. (Lawson 

(2015), Spiegelhalter, D.J. et al. (2002)) The best fitting model should have the lowest DIC 

and small effective number of parameters to estimate (n.eff). Several models were examined 

to determine the best fitting model via DIC, as seen in Table 2. The first model incorporated 

a normal random effect for each county and a grand intercept. Moran’s I test (Lee, D. 

(2013)) on the yearly county level direct SRs in this study indicated strong spatial 

autocorrelation as expected. Thus, the addition of a spatially structured random effect for 

each county to the first model reduced the DIC by 405 points, accounting for the existence 

of strong spatial autocorrelation but n.eff remained the same. The fixed year effects 

accounting for linear trends in time, did not provide any improvement in the DIC value and 

were not included in the model. To account for potential non-linearities in the county level 

SRs over time, correlated random time effects with a Type II random walk prior distribution 

were incorporated which resulted in a reduction in DIC by 1958 points and n.eff reduced to 

1884, indicating the strong non-linear temporal dependence in the SRs at the county level 

not evident at the state level. The model with uncorrelated time effects resulted in a slight 

increase in DIC as compared to the model with correlated time effects and n.eff remained 

approximately the same. Hence, correlated time effect was retained in the model. The DIC 

for models incorporating both uncorrelated and correlated time effects suggested no 

improvement in model fit. To account for residual spatiotemporal variation unaccounted for 

by the main effects, an independent identically distributed space time interaction term was 

included which further reduced the DIC by 186 points but n.eff increased to 2766. Models 

including a space-time interaction term with a random walk prior distribution did not result 

in an appreciably lower DIC value and increased the computation time substantially, and 

thus was not included. The final model included county and time random effects, a space 

time interaction term, and the full set of time-varying covariates to account for measured 

confounders. The model with time varying covariates and without time varying covariates 

had a DIC difference of 640 points. Thus, the model with the full set of time varying 

covariates provided the best fit, providing the least value of DIC amongst all the models that 

were explored and a lower value of n.eff (1896) as compared to the null model and hence 

was selected as the best fitting model. The best hierarchical Bayesian model incorporating 

time varying covariates and several time and county random effects for SRs is:
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The county level SR estimates from the best model and more parsimonious models (no 

covariates or only a subset of statistically significant covariates) were highly correlated (R2 

from 0.88–0.99, see Supplemental Figure S1 in online supplemental information). However, 

the DIC value indicated a better fit for the model incorporating time varying covariates 

accounting for the extra uncertainty due to measured confounders. Since a better fitting 

model provides lower posterior mean deviance and the number of effective parameters to 

estimate, the best model incorporated all the time varying covariates and was selected as the 

best fit.

The estimated marginals of the coefficients of the fixed effects and the estimated marginals 

of the precisions of the prior variances for all the random components from the best model 

were also checked for convergence. Table 3 shows the posterior means, posterior standard 

deviations, 95 % Bayesian credible intervals and the posterior mode for all the estimated 

marginals of the precisions of the prior variances for the random effects in the best model. 

The mode of the posterior density of the precision of the prior variance for the spatial effect, 

ui is small accounting for a large amount of spatial autocorrelation as compared to the 

precision of the prior variance for the non-spatially structured random effect vi, indicating 

the borrowing effect amongst counties. The mode of the posterior density of the precision of 

the prior variance for the space time interaction term, ψit is also small capturing the 

temporal dependence of SRs and indicates borrowing of strength across years. The residual 

spatio-temporal variation is accounted for by fixed effects and the correlated time effects, φ1t 

for which the mode of the posterior density of the precision on the prior variance is 

comparatively small validating our belief in statistical modeling assumptions for the SRs and 

supporting our choice of spatio-temporal model accounting for year and county effects. 

Figure S3, in the supplemental online information shows the distribution plots of the 

estimated marginals of the precisions of the prior variances for the random components from 

the best model. This model accounts for non-linear effects in time at the county level, which 

are not evident at the state level, via the correlated random time effects, φ1t, a distinct feature 

of the space-time modeling methods in R-INLA which can be considered in future small 

area mapping studies for the small scale-geography data. This model is an improvement on 

the past Bayesian spatio-temporal models accounting for linear trends via MCMC in the 

software Winbugs and captures the non-linearity in time at the county level via the 

correlated random effects. (Khan, D. et. al. (2018), Lawson, A. (2015))

3.4 Model check and accuracy

Residual analysis was conducted to compare the state level direct estimates with the 

aggregated state level model-based estimates to check the model accuracy and performance. 

The county-level model-based posterior predictions for each year were summed by state, 

weighted by county population size as a proportion of state population size, to calculate the 

state-level model-based estimates. The comparison of the state-level directly estimated SRs 

and the aggregated model-based state-level SRs for the best model for different years is 

shown in Figure 1. The majority of the estimates fall on the line of equality, indicating the 

lack of any major model failures that would result in large deviations from the state-level 

direct estimates. The national direct SRs and the aggregated national model-based SRs were 

also plotted in Figure S2 in the supplemental online information, illustrating that for the US, 
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the model-based estimates corresponded very closely to the national direct estimates of 

suicide rates from 2005–2015.

As an additional model check, the shrinkage between the direct state-level SRs and the 

aggregated model-based state-level SRs is plotted and can be seen in Figure 2. States with 

small populations show larger shrinkage in model-based SRs, a tendency of the aggregated 

model-based state-level SRs to scale towards local area (county/state) model-based mean 

SRs, indicating borrowing of strength from neighboring areas (counties/states).

Sensitivity analysis was conducted to compare the Delaunay triangulation and sphere of 

influence spatial weighting schemes. The estimated county level SRs and the associated 

posterior standard deviations from the two spatial weighting schemes were highly correlated 

(R2 =0.99) as seen in Figure S4 in the Appendix.

3.5 Covariates

The inclusion of covariates can enhance the predictive power of small area estimation 

models. (Rao, J.N.K. (2003)) Several covariates were significant predictors of county-level 

SRs (i.e., 95% Bayesian Credible Intervals excluded zero). Coefficients and 95% Bayesian 

credible intervals for covariates and a list of significant as well as non-significant variables 

included in the full model are shown in the supplemental online information in Table s2. 

Covariates were included in this study to enhance the small area predictions. Thus, the 

coefficients should be interpreted with caution, as they represent ecological relationships and 

are not suggestive of causal pathways or individual-level risk factors. Broadly, covariates 

significantly associated with SRs included: demographic characteristics (e.g., household 

size, racial and ethnic distribution, urbanization level, divorce rates), socioeconomic factors 

(e.g., median home value, median gross rent, household crowding, median per capita 

income, % persons with college education, unemployment rate, high-cost loan rate), and 

health-related characteristics (e.g., % abusing or dependent on illicit drugs or alcohol in the 

previous year, treatment gap for alcohol and drug use, prevalence of major depressive 

episode, and county-level model-based estimates of age-adjusted death rates due to drug 

poisoning). This is consistent with prior analyses reporting county-level (i.e., ecological) 

associations between socioeconomic, demographic and/or health-related factors and suicide 

rates. (Brenner, B. et al. (2011), Crosby, A.E. et al. (2011), Haws, C. A. (2009), Hempstead, 

K. (2006), Kerr, W.C. et al. (2016), Kim, N. (2011), Lester, D. (1995), Miller, M. et al. 

(2006), Opoliner, A. et al. (2014), Siegel, M. and Rothman, E. F. (2016))

3.6 Spatio-temporal variation

The actual number of deaths due to suicide at the county level for the year 2015 (number of 

deaths less than 20 are suppressed) are shown in Figure 3. This map precludes examination 

of geographic variations in county level SRs because most of the actual county level data 

extracted from the NVSS files are suppressed. The majority of counties across the U.S. 

report fewer than 20 suicide deaths in any given year, the criterion for suppression of death 

rates due to concerns about statistical reliability by the Division of Vital Statistics at the 

National Center for Health Statistics. (Kochanek, K.D. et al. (2016), page 118). The maps 

obtained by mapping stable posterior predictions from the best fitting Bayesian spatio-
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temporal for the county-level SRs for the years 2005 (Figure 4 (top)) and 2015 (Figure 4 

(bottom)) enable examination of the geographic patterns and broad scale trend in spatio-

temporal variability for the years 2005 and 2015 for all of the counties. The uncertainty 

associated with the estimated county level SRs for the years 2005 and 2015 is very small as 

shown in Figure S5 (2005 (top) and 2015 (bottom)) in the Appendix. A comparison of the 

aggregated state level SRs obtained by aggregating county level SRs via MCMC simulations 

in the software Winbugs with the same modeling assumptions as in Section 3.2 and vague 

prior distributions specifications, showed that the predictions are almost the same (Figure S6 

in the Appendix), further solidifying our belief in the INLA based predictions. However, the 

MCMC programs took 8 weeks to converge in the software Winbugs.

In 2005 and 2015, counties with the highest model-based SRs were predominantly located 

across the western US while the lowest rates were observed across southern California, 

western Texas, along the Mississippi river, and in areas along the East Coast. These patterns 

were largely consistent over time. Multiple studies have described state-level variation in 

suicide rates (SRs), with higher rates noted in Western states lending credibility to the model 

based county level SRs. (Karch, L.D. et al. (2009), Kposowa, A.J. (2013)) This further 

validates our belief in statistical modelling assumptions. Additionally, the maps for the years 

2005 (Figure 4 (top)) and 2015 (Figure 4 (bottom)) with robust and reliable county level 

estimates highlight all counties with high and low suicides mortality which can be used to 

target prevention programs and for more effective allocation of resources. Hence, the 

existing Bayesian spatio-temporal techniques in R-INLA outlined in this study can be useful 

in analyzing the trend and changing spatial patterns of a small area outcome such as SRs at 

the county level not afforded by examination of direct state estimates, national estimates and 

direct county level estimates.

The absolute differences in the model based county level SRs in the U.S. from 2005–2015 

are shown in Figure 5. The absolute differences map of the posterior predictions of the 

county level SRs depicts the magnitude of change in spatio-temporal variability in county 

level SRs for the years 2005 and 2015. Approximately 77% (2418) counties reported an 

absolute difference between 1 and 5 in the model based county level SRs for the years 2005 

and 2015. The spatial patterning of the random effects can be seen in Figure 6 accounting 

for the large correlated heterogeneity in areas where the SRs are high. This supports our 

choice of using a spatially structured random effects model. The extra uncorrelated 

variability is seen in Figure 7. Thus, the existing hierarchical Bayesian spatio-temporal 

models in R-INLA can account for the differences in time and the challenges associated with 

examining unreliable direct estimates for less common causes of mortality outcomes for 

small scale geographic data and produce robust and reliable estimates enabling examination 

of spatiotemporal variations

4 Discussion

County-level direct estimates of less common mortality outcomes are often highly unstable. 

Many prior studies on county-level variations in less common causes of mortality outcomes 

have relied on estimates aggregated over time or larger geographic areas. However, this type 

of aggregation precludes the examination of detailed temporal and spatial trends. To 
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overcome these limitations, this study uses hierarchical Bayesian methods to generate robust 

model-based estimates of yearly county-level SRs to examine the spatio-temporal variations 

across a span of 11 years.

This study contributed to the existing literature by applying an existing methodology, 

namely hierarchical Bayesian spatio-temporal models in R-INLA to estimate county-level 

SRs in order to examine spatiotemporal variation in SRs. Although there are a variety of 

alternative models with different assumptions that we did not explicitly explore, this study is 

the first to incorporate spatiotemporal random effects along with time varying confounders 

to estimate annual county level estimates for SRs for the years 2005–2015. There was 

substantial geographic variation in SRs. The majority of the counties across the U.S. 

demonstrated an increase in suicide death rates over this time period and no counties 

exhibited a decline. The existing Bayesian spatio-temporal modeling techniques in R-INLA 

can potentially be applied to a large number of rare causes of mortality-related outcomes 

from vital statistics data to examine geographic and temporal variation.

The use of R-INLA method resulted in substantially reduced computation time for this 

study, an average of twenty four for the best model with a full set of covariates and six to 

twenty four hours for models with no or few covariates, as opposed to weeks of time 

required for simulations based Markov Chain Monte Carlo (MCMC) via WINBUGS with 

large spatial datasets. (Khan, D. et al. (2018), Martins, T.G. et al. (2013), Rockett, I.R. et al. 

(2012), Rue, H. and Martino, S. (2009)) A variety of models incorporating space and time 

random effects could be tested in R-INLA without an overwhelming burden of computation 

time. INLA provides substantial flexibility with several built-in model components and 

specifications to examine a variety of models such as proper CAR (Conditionally 

autoregressive), ZIP (Zero Inflated Poisson) and Besag Proper without the need of further 

programming expertise. Moreover, the functional form of the covariates in R-INLA can be 

specified in different forms and can be other than linear as well.

The model fit was examined via DIC comparisons. Amongst the models fitted, the 

contribution of different space and time components was examined by the subsequent 

reduction in DIC values and the effective number of parameters to estimate. The best-fitting 

model captured the spatial autocorrelation and the time dependence structure of the data and 

was further improved by using time varying covariates accounting for the extra variability 

that was not captured by the main time and county effects. The best fitting model was found 

to have the lowest DIC with small number of effective parameters to estimate as compared 

to the model without time varying covariates. However, the temporal random effect was 

found to be an autoregressive process of order 1 which dampens out after a certain period of 

time. This suggests that future analyses might not require too long of a stretch of data in 

time in order to compute stable county level SRs. The comparison of state-level directly 

estimated SRs and the aggregated model-based state-level SRs for the different years 

showed that the majority of estimates fell on the line of equality indicating a close 

correspondence between the model-based state SRs and the direct state SRs at larger 

geographic scales.
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The limitations of this study are as follows. Although a large number of models were 

implemented, alternative models incorporating different covariates from other data sources 

and space and time components might have improved the predictions. Secondly, R-INLA 

software can implement a variety of traditional models that are built-in, however there are a 

class of models such as latent mixture models that still need to be implemented. Moreover, 

the prior specifications that are not built-in in R-INLA need to be programmed. Thirdly, this 

study incorporated a large number of covariates to account for measured covariates, however 

suicides rates vary by gender and age groups and future studies can look at suicide rates by 

these mechanisms. Lastly, there is underreporting in suicides numbers and the actual number 

of suicides are always larger than the reported. Underreporting and measurement errors in 

suicides cannot be understated and have been studied in the literature (Claassen, C.A. et al. 

(2010)). Future studies can consider more explicit handling of the prior distributions other 

than the default priors specified in R-INLA (Simpson, D. et al. (2017)).

Future research exploring spatial clustering of less common causes of mortality outcomes 

over time, including at sub-county levels, would provide further understanding of how the 

small-scale geographic variation may be spatially patterned across the U.S. Lastly, the R-

INLA package has provided a new, flexible and substantially faster alternative to MCMC 

methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of state-level direct estimates (y-axis) and model-based estimates (x-axis), by 

year.
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Figure 2. 
Shrinkage of suicide rates for each state, by population size for 2015. Crude death rates are 

plotted at the start of the arrows, and model-based death rates are located at the end of the 

arrows. Shrinkage is greater in states with smaller populations (left side of the chart) and 

more extreme suicide rates.
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Figure 3. 
Crude county level deaths due to suicides for the year 2015. Number of deaths less than 20 

are suppressed.

Khana et al. Page 19

J Data Sci. Author manuscript; available in PMC 2018 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Predicted county-level suicide death rates in 2005 (top) and 2015 (bottom).
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Figure 5. 
Absolute differences in model based county level suicide rates in the U.S. from 2005–2015. 

(The legend corresponds to the increase in suicide number of deaths per 100,000)
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Figure 6. 
Spatially structured random effect representing correlated heterogeneity in suicide rates 

across U.S. counties.
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Figure 7. 
Spatially unstructured random effect representing uncorrelated heterogeneity in suicide rates 

across U.S. counties.
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